Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.

نویسندگان

  • Ivan R Piletic
  • Howe-Siang Tan
  • M D Fayer
چکیده

The dynamics of water in nanoscopic pools 1.7-4.0 nm in diameter in AOT reverse micelles were studied with ultrafast infrared spectrally resolved stimulated vibrational echo and pump-probe spectroscopies. The experiments were conducted on the OD hydroxyl stretch of low-concentration HOD in the H2O, providing a direct examination of the hydrogen-bond network dynamics. Pump-probe experiments show that the vibrational lifetime of the OD stretch mode increases as the size of the reverse micelle decreases. These experiments are also sensitive to hydrogen-bond dissociation and reformation dynamics, which are observed to change with reverse micelle size. Spectrally resolved vibrational echo data were obtained at several frequencies. The vibrational echo data are compared to data taken on bulk water and on a 6 M NaCl solution, which is used to examine the role of ionic strength on the water dynamics in reverse micelles. Two types of vibrational echo measurements are presented: the vibrational echo decays and the vibrational echo peak shifts. As the water nanopool size decreases, the vibrational echo decays become slower. Even the largest nanopool (4 nm, approximately 1000 water molecules) has dynamics that are substantially slower than bulk water. It is demonstrated that the slow dynamics in the reverse micelle water nanopools are a result of confinement rather than ionic strength. The data are fit using time-dependent diagrammatic perturbation theory to obtain the frequency-frequency correlation function (FFCF) for each reverse micelle. The results are compared to the FFCF of water and show that the largest differences are in the slowest time scale dynamics. In bulk water, the slowest time scale dynamics are caused by hydrogen-bond network equilibration, i.e., the making and breaking of hydrogen bonds. For the smallest nanopools, the longest time scale component of the water dynamics is approximately 10 times longer than the dynamics in bulk water. The vibrational echo data for the smallest reverse micelle displays a dependence on the detection wavelength, which may indicate that multiple ensembles of water molecules are being observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water dynamics--the effects of ions and nanoconfinement.

Hydrogen bond dynamics of water in highly concentrated NaBr salt solutions and reverse micelles are studied using ultrafast 2D-IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments performed on the OD hydroxyl stretch of dilute HOD in H(2)O. The vibrational echo experiments measure spectral diffusion, and the pump-probe experiments measure orientational relaxatio...

متن کامل

Confinement or the nature of the interface? Dynamics of nanoscopic water.

The dynamics of water confined in two different types of reverse micelles are studied using ultrafast infrared pump-probe spectroscopy of the hydroxyl OD stretch of HOD in H2O. Reverse micelles of the surfactant Aerosol-OT (ionic head group) in isooctane and the surfactant Igepal CO 520 (nonionic head group) in 50/50 wt % cyclohexane/hexane are prepared to have the same diameter water nanopools...

متن کامل

Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction.

Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe ...

متن کامل

Dynamics of water confined on a nanometer length scale in reverse micelles: ultrafast infrared vibrational echo spectroscopy.

The dynamics of water, confined on a nanometer length scale (1.7 to 4.0 nm) in sodium bis-(2-ethylhexyl) sulfosuccinate reverse micelles, is directly investigated using frequency resolved infrared vibrational echo experiments. The data are compared to bulk water and salt solution data. The experimentally determined frequency-frequency correlation functions show that the confined water dynamics ...

متن کامل

Vibrational dynamics of ice in reverse micelles.

The ultrafast vibrational dynamics of HDO:D(2)O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is studied to characterize the micellar structure. Small reverse micelles with a water content up t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 45  شماره 

صفحات  -

تاریخ انتشار 2005